
CS440 Project
Image Classification

Da Huo

April 29, 2018



0. Image Processing and Feature Extraction

We used the code provided from Berkeley’s website for imageing process-
ing and feature extraction.

1. Naive Bayes Classifier

1.1 Features

In this algorithm, the features we used for Naive Bayes digits classfier
is just a set of pixel features. For each pixel φj, it can take either value 0,
means this pixel is white, or value 1, means this pixel is black/grey. And we
reture a dictionary contains the coordinate of pixel as keys, and either 1 or
0 as values.

1.2 Smoothing

In this algorithm, we use Laplace smoothing, which is to add a constant
k to every possible observation value,

1.3 Train and Tune

To train our program, we first need to find

P (Y = y) =
number of data with label Y = yin training set

total number of training data

To find this probability, we keep a dictionary with key is each legal label Y
and values is number of occurance, and iterate over all data set and increment
each label’s value by 1 every time. After we get total count for all labels, we
calculate the probability P (Y = y) for each label and store it in a python
dictionary.

To find

1



We keep the following dictionary structure:
featureCounter={label: dict{ featureKey: {lebalFeatureValue: number of
this value for this feature in training data given label y}}

Then for each label with each feature with each specific value, we incre-
ment its count by 1.

To calcualte the conditional probability, for each legal label, feature, legal
feature value, we take its count, plus k, and divide by its label count plus
total count of legal feature values times k since we want to take +k out of
the sum.

1.4 Classify

To classify a datum, we compute the log probability of P (y|f1, ..., fn)
since the probability we get will be a too small number, so we take the log
probability to make it easier to compare.

We compute the log probability for each one of the legal label following
the equation below

Then the label with maximum probabiltiy will be our guess.

1.5 Experiment

1.5.1 Digits Classifying

We tested our program on 10%,20%,30%,40%,50%, 60%,70%,80%,90%,100%
of the total training data size, we get the accuracy and standard deviation on
100% of the total test data size. We generated the following graphs (figure
1-3) for time for training, accuracy, and standard deviation.

2



Figure 1: time spent for training in naiveBayes digits classfier

Figure 2: accuracy of classification in naiveBayes digits classfier

3



Figure 3: standard deviation of classification in naiveBayes digits classfier

The detailed information about each experiment is stored in results.txt
file under project directory.

1.5.2 Faces Classifying

We tested our program on 10%,20%,30%,40%,50%, 60%,70%,80%,90%,100%
of the total training data size, we get the accuracy and standard deviation on
100% of the total test data size. We generated the following graphs (figure
4-6) for time for training, accuracy, and standard deviation.

The detailed information about each experiment is stored in results.txt
file under project directory.

2. Perceptron Classfier

2.1 Features

In this algorithm, the features we used for Naive Bayes digits classfier
is just a set of pixel features. For each pixel φj, it can take either value 0,
means this pixel is white, or value 1, means this pixel is black/grey. And we
reture a dictionary contains the coordinate of pixel as keys, and either 1 or

4



Figure 4: time spent for training in naiveBayes faces classfier

Figure 5: accuracy of classification in naiveBayes faces classfier

5



Figure 6: standard deviation of classification in naiveBayes faces classfier

0 as values.

2.2 Initializing Weights

In this algorithm, we initialize all weights to 0s at the begining and then
modify them.

2.3 Training

To train our program, we first set a max iteration number. Once this
number is reached, then we stop training our program.

We keep a list of weights corresponding to the features for each legal label.
We use python dictionary to store these lists where the key is the label and
value is list of weights.

For each iteration, we loop over all training data, for each datum, we
compute a list of numbers corresponding to all legal labels following the
equation:

f(xi, w) = w0 + w1φ1 + ...+ wjφj

we pick the label with highest f(xi, w) to be our guess. If guess == label,
means we predicited correctly and no changes is needed. If guess! = label,
it means the weight list for correct label is too small and weight list for our

6



guess is too large, so we do the following modifications:

fori = 1, 2, ..., j : weights[label][i]+ = φi(datum)

w0+ = 1

fori = 1, 2, ..., j : weights[guess][i]− = φi(datum)

w0− = 1

We repeat this process until nothing is changed in one iteration or the
max iteration is reached.

2.4 Classifying

To classify a given datum, we compute a list of numbers corresponding
to all legal labels following the equation:

f(xi, w) = w0 + w1φ1 + ...+ wjφj

And we pick the label with highest f(xi, w) to be our guess.

2.5 Experiment

2.5.1 Digits Classifying

We tested our program on 10%,20%,30%,40%,50%, 60%,70%,80%,90%,100%
of the total training data size, we get the accuracy and standard deviation on
100% of the total test data size. We generated the following graphs (figure
7-8) for time for training, accuracy, and standard deviation.

The detailed information about each experiment is stored in results.txt
file under project directory.

2.5.2 Faces Classifying

We tested our program on 10%,20%,30%,40%,50%, 60%,70%,80%,90%,100%
of the total training data size, we get the accuracy and standard deviation on
100% of the total test data size. We generated the following graphs (figure
10-12) for time for training, accuracy, and standard deviation.

The detailed information about each experiment is stored in results.txt
file under project directory.

7



Figure 7: time spent for training in perceptron digits classfier

Figure 8: accuracy of classification in perceptron digits classfier

8



Figure 9: standard deviation of classification in perceptron digits classfier

Figure 10: time spent for training in perceptron faces classfier

9



Figure 11: accuracy of classification in perceptron faces classfier

Figure 12: standard deviation of classification in perceptron faces classfier

10



3. Discussion

In all the experiment we performed, our program can perform with an
accuracy > 70% if enought training is provided.

In terms of time spent on training process, it is proportional to the amount
of traning data provided, means the more training data is provided, the longer
it takes to finish the training process.

In terms of accuracy, it is proportional to the amount of training data
provided at the begining, but after a certain amount of training data is
provided, for example 40%, it converges to a certain accuracy and will not
increase too much if more training data is provided. Sometime the accuracy
may drop a bit when more training data is given because of overfitting.

In terms of standard deviation, it is inverse proportional to the amount
of training data provided at the begining, but after a certain amount of
training data is provided, for example 40%, it converges to a certain number
and will not change too much if more training data is provided. Sometime the
standard deviation may rise a bit when more training data is given because
of overfitting.

4. Lessons Learned

The lesson I learned is that more training data does not nessesarily means
a higher accuracy. The accuracy will converge to a certain amount depending
on the featuer chosen and algorithm used. So when it comes to train our
program, we need to do some experiment to find the amount of training data
we have to use in order to reach the converging point. So we don’t waste too
much time on training process with the same accuracy.

11


