RUTGERS

UNIVERSITY

Independent Study in Computer Science
Implementation of RVO Algorithm

Da Huo

May 9, 2018

1. Introduction

To get rid of the dependency to external libraries, we create our own
implementation of the RVO algorithm. In this project we implemented two
software, path resampling and the RVO algorithm.

2. Path Resampling

In our previous work, since different path planning algorithms give paths
with different densities, our robots cannot run smoothly. In order to let the
robots run smoothly while preserving the collosion free path, we need to
come up with an algorithm which resamples data points with a fixed density
following the original path.

2.1 Algorithm

Given a fixed distance between new path points d, we first calculate the
distance between current points in new path to the next point in old path
dist. We break the old path to n line segments, while dist > d, we keep find
the equation or slope of current line segment, keep sampling new points on
current line segment until dist < d, then we move on to the next line segment
and repeat this process until we run out of line segments.

2.2 Experiment

We tested our algorithm first on a un-evenly distributed path with a right
angle as figure 1 shows:

we get the following results after resampling with d = 0.5 as figure 2
shows

We then tested our algorithm first on a un-evenly distributed random
path as figure 3 shows:

we get the following results after resampling with d = 0.5 as figure 4
shows

10

A€EI>IPQ =R

Figure 1: path with a right angle before sample

10

N
o0000OGOOO

01 o0 00

- 0 2 4 6 8 10
A€E>IPQE=R

Figure 2: path with a right angle after sample

10
[]
8
°
6 ° °
[]
4 °
°
5
°

0 °
-2 .

-2 0 2 4 6 8 10

A€IPQ=n

Figure 3: random path before sample

10
°
°
8 °
°
°
°
°
6 .ooo..
°
°
°
4 °. :
o. o
.o
2 °
°
°
°
°
0 °
-2 T
-2 0 2 4 6 8 10
A€>PQ=N

Figure 4: random path after sample

3. RVO

3.1 Algorithm

For every two agents, if the agents will collide within the time horizon t,
then we generate a velocity obstacle for each party. After we generate velocity
obstacles for each neighbor that are potentially in collision in time ¢, we find
the boundry of the union of these velocities. The orthogonal projection of the
agent’s prefered velocity onto the cloest point from agent’s prefered velocity
to the boundry of the velocity obstacles. This projection is the new velocity
of our agent.

3.2 Experiment

We tested our program with 2 agents going toward each other as figure
5-8 shows

12

10 A

-2 0 2 4 6 8 10 12

A€E>PQ=R

Figure 5: 2 agents going toward each other at time ¢1

We also tested our program with 6 agents going toward each other as
figure 9-12 shows

12

10 A

- 0 2 4 6 8 10 12
A€EI>PQ =R

Figure 6: 2 agents going toward each other at time ¢2

12

10 A

T T T T T T
-2 0 2 4 6 8 10 12

A€E>PQER

Figure 7: 2 agents going toward each other at time ¢3

12

10 A

-2 0 2 4 6 8 10 12

AE€E>PQE

Figure 8: 2 agents going toward each other at time t4

12

10 A

' 0 '
4
2
0 ' '
-2 T T T T T T
-2 0 2 4 6 8 10 12

Aa€e>IPQ=DB

Figure 9: 6 agents going toward each other at time ¢1

12

10 A

+ L L K
i

-2 0 2 4 6 8 10 12

& € > P Q=

Figure 10: 6 agents going toward each other at time ¢2

12

10 A

Y3

-2 0 2 4 6 8 10 12

A€E>PQ=R

Figure 11: 6 agents going toward each other at time t3

12

10 A

-2 0 2 4 6 8 10 12

#€IPQF=B

Figure 12: 6 agents going toward each other at time ¢4

