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Abstract — Smart home automation can empower 
everyday tasks by enabling limited human intervention 
between the number of devices on the same network, or 
within the same bandwidth connection. These everyday 
home devices send data through a heterogeneous network 
of sensors and actuators to a centralized database which 
then  appropriately generates responses for the “things” 
connected.  Though beneficial, this may also lead to 
external parties being able to control this data so security 
is a major issue.  
 
Index Terms — IoT, TI Sensortag, LARS, SSH Tunneling 

I. INTRODUCTION 
 

Internet of things (IoT) .  
 
Our IoT simulation involves two separate teams. Our 
project team is the Blue Team, or the defense team, and 
the other team is the Red Team, or the attack team. 
 
While one of our main objectives is to build an end-to-
end IoT framework to collect and analyze sensor data 
from devices, the remainder of our objectives revolve 
around combating the objectives of the Red Team. 
 
This paper describes the design  of an end-to-end security 
conscious IoT framework for everyday home devices, 
using openHAB, which actively uses machine learning 
techniques to detect attacks on its data.  
 
Our initial system was set up to incorporate two different 
wireless communication protocols: Bluetooth Low 
Energy and Z-wave. 

 
Figure 1: Block Diagram of the IOT Framework 

II.  FRAMEWORK ARCHITECTURE 

A. Overview: 

 
Figure 2: End-to-End Detailed Architecture 

B. Communication Protocols 

1) Bluetooth Low Energy 
2) Z-wave 

C. Hardware Components 

1) Texas Instruments Sensortag CC2650 
2) Aeotec Smart Switch 6 

D. Open Source Software Components 
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1) openHAB: The open Home Automation Bus is an 
open source, technology agnostic home automation 
platform which runs as the center of a smart home. 
openHAB software integrates different home automation 
systems, devices and technologies into a single solution. 
It provides uniform user interfaces, and a common 
approach to automation rules across the entire system, 
regardless of the number of manufacturers and sub-
systems involved.[7] 

● Architecture Overview: 
openHAB is developed in Java and mainly based 
on the Eclipse SmartHome framework. It uses 
Apache Karaf together with Eclipse Equinox to 
create an Open Services Gateway initiative 
(OSGi) runtime environment. Jetty is used as an 
HTTP server. It is a highly modular software 
which can be extended to a variegated 
applications from creating common UIs to 
interacting with ever growing number of 
physical things through ‘Add-Ons’.[7] 
 

 
Figure 3: OpenHAB architecture overview 

In openHAB things are the entities which can be 
physically added to the system like bluetooth sensors, Z-
wave devices, web services etc. Bindings are the 
software adapters which make the things available in the 
home automation system. Items are the capabilities 
which can be utilized in our applications for either 
building any automation location or for creating 
customizable graphs/ UI. Items may have different 
states. The links are the glue between the items and the 
things. In our automation system, we use things like 
bluetooth sensors and Z-wave devices. The bluetooth 
sensors help us gather information about coffee machine 
and the refrigerator. These sensors are added as things 
and have different items like humidity, light, 
temperature, accelerometer etc. This sensor data can be 
used to detect temperature values, to learn patterns and 

help to predict when will the coffee be ready. The Z-
wave controller communicates with the microwave, 
coffee machine, water cooler etc to provide us with data 
about those devices. Our system is able to receive the 
data from these things and has items like current 
consumption, power consumption, switch  etc. We are 
able to automate the process of switching the devices On 
/ Off at night by communicating with the nodes. We 
collect the bluetooth sensor data to detect light intensity 
at night and use that information to generate automation 
rules to switch off the Z-wave devices if there is no one 
in the break room. The rule engine in openHAB helps in 
the process of automation.  

 
2) Influx Database: 
InfluxDB is used as a data store for any use case 
involving large amounts of time-stamped data, including 
DevOps monitoring, log data, application metrics, IoT 
sensor data, and real-time analytics. InfluxDB helps us 
to persist time series data and conserve space on our 
system. It saves data for a defined length of time and 
auto expires unneeded data if any. It also provides SQL 
like language to query and interact with the data. We are 
able to persist all the items’ states in the InfluxDB every 
minute. The InfluxDB can be linked and configured to 
OpenHAB which helps us to store and query all the data 
that openHAB monitors.[8] 
 
3) Grafana: 
Grafana is an open source software for time series 
analytics. It can be linked to many databases and helps 
to query, interact and display real time data. We 
configured the InfluxDB in Grafana and linked the 
database to openHAB, thus querying real time data from 
the database and displaying it through customizable 
graphs. We were able to query all the items available in 
openHAB and display their graphs on Grafana as all the 
data was persisting to InfluxDB and the database was 
configured in Grafana.[6] 
 
 

III. FRONT END APPLICATION 
 
The strategy we used to make the coffee email 
notification work is to constantly monitor the gradient of 
coffee pot’s temperature. We take the gradient of 
temperature data over the past 5 minutes using the 
sliding window shown in Figure 3: 
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Figure 3: Gradient of Ambient Temperature 

 
We analyzed temperature data over the past month to set 
the gradient threshold to be 0.003 C°/sec. When the 
gradient monitor detects a gradient greater than 0.003 
C°/sec, the coffee machine is predicted to be on and 
making coffee. We will send out an email notification to 
everyone at this time. 
 
In order to achieve real time data analysis regardless of 
sensor disconnection, we used a separate data analyzer 
server and transfer data through WebSocket. 
 
For security purposes, when we send emails, we need to 
register our application to Google API and let the 
software send out the email. 
 

IV. ARTIFICIAL INTELLIGENCE TRAINING 

A. Overview 

Artificial Intelligence and Machine Learning is used in 
this project to identify attacks from the Red Team. We 
trained regression models to predict future ambient 
temperatures. In the case of spoofed data from the Red 
Team, we would use our predictions to determine 
whether incoming data was likely to be falsified or not. 
In addition, we also monitored our data to detect data 
gaps, check results with other parameters, and account 
for additional noise. 

 
 

Figure 4: 

B. Training Models 

We started with three different regression models: 
Ridge, Lasso, and Elastic Net. These regression models 
are called regularization methods. They both minimize 
the sum of the squared error of the model on the training 
data while also reducing the complexity of the model 
(absolute sum of all coefficients). Ridge Regression 
retains all the features of the data and shrinks the 
coefficients. Lasso Regression only keeps very 
important variables and sets all other correlated ones to 
zero. The Elastic Net Regression is the combination of 
these two regressions. It groups correlated variables 
together, and an entire group of variables are included in 
the final model building if any one of the variables in the 
group is a strong predictor. This model is best used when 
training data has many data points (>10,000) because 
Ridge keeps too much data to be efficient, and Lasso 
removes too much necessary data. The Elastic Net model 
minimized the cost function to the greatest extent; 
therefore, the Elastic Net model was the optimal one [2]. 
However, we were able to reduce overlap of RMSE 
distributions of falsified and non-falsified data to the 
greatest extent with LARS, or Least-Angle Regression. 
This algorithm is also a linear regression algorithm, 
although it functions mainly by incrementally expanding 
the impact of highly explanatory variables [3]. 

C. Predictor Evaluation 

We used the RMSE (root mean square error) loss 
function to evaluate the performance of the predictors 
we trained. This loss function computes the average of 
the squares of the absolute difference between predicted 
and observed values and returns the square root of this 
average. It is a useful measure of performance for 
regression because it provides the standard amount by 
which predicted data differs from observed data. 

D. Fake Data Simulation 

In order to test the accuracy of our anomaly detection 
techniques, we needed to be able to generate fraudulent 
data that appeared similar to the original data. To do this, 
we modified a multiplier for each data points, initialized 
at 1, by very small, random increments. This method 
ensured that the fabricated data would not have random 
spikes, and would thus look similar to the original data. 
Both the multiplier and the fake data were confined to 
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specific bounds to ensure that the simulated fraudulent 
data did not deviate very significantly from the real data. 

E. Prediction 

For the first method, We trained an Elastic Net 
regression model to predict a given sensor value for the 
coffee pot using all sensor values for sensor readings a 
minute in the past. For example, one instance of this 
model predicted future ambient temperature based on 
object temperature, lighting, pressure, humidity, and 
predicted ambient temperature for the previous minute. 
The use of predicted ambient temperature, rather than 
measured ambient temperature, was important for this 
regression as it ensured that the model would rely only 
on recent measured data and previous predictions. A 
model that used measured instead of predicted ambient 
temperature data from the previous minute to predict 
current ambient temperature could reach extremely high 
levels of accuracy just by producing a value very close 
to the previous value. Thus, using predicted ambient 
temperatures resulted in predictions whose accuracy 
gave a far more valuable representation of the predictive 
value of the given sensor readings. While this specific 
model was not particularly useful for making long-term 
predictions as it required recent sensor data for each 
individual prediction, it proved useful for the purpose of 
anomaly detection.  

We made a separate program to give us useful 
predictions of future data. This program uses measured 
data to predict data 15 minutes in the future. This 
program is effective because it can make predictions 
farther into the future without new sensor data. This 
prediction algorithm performed with an RMSE loss 
value of 1.83 after modifying the hyperparameters of the 
Elastic Net regression algorithm. 

We also applied another methodology with higher 
accuracy: trend fitting. Before that we tried various 
algorithms(LSTM, LR .etc) for prediction. They all have 
same problem: huge accuracy fluctuation may happen 
when dealing with different test datasets. So we moved 
our focus from learning the feature of the whole day to 
simulating the data trend within a certain range near the 
current data point. So firstly we achieved fitting within 
time t-14 to t; then we make a prediction of temperature 
of time (t+19) which is 20 mins later . Finally we 
achieved that with only 0.6 RMSE loss. We also tried 
various degrees of trend fitting and we found that high 
degrees may have better performance in certain 

intervals, but have larger oscillation in the total period, 
so we used only one-degree fitting instead. 

F. Anomaly Detection 

Using the trained Elastic Net regression model from 
section B, we were able to classify incoming sensor data 
as valid or fraudulent. This was done by randomly 
generating falsified and non-falsified testing data sets 
and computing the model’s performance on each of 
these data sets. The performance score used was the 
RMSE loss function. We then graphed the distributions 
of RMSE loss values for falsified and non-falsified data 
sets, and found that the overlap between these 
distributions was minimal. This made it possible to 
identify a RMSE loss cutoff that could be used to 
reliably distinguish between legitimate and fraudulent 
data, which performed with 95% accuracy. We were 
able to increase this level of accuracy to 100% by using 
LARS regression, predicting data 15 minutes into the 
future and using two consecutive data points to make 
this prediction. This 100% accuracy does not necessarily 
extend to all fraudulent data and instead only applies to 
our method of generating falsified data [4]. 

Additionally, we implemented two other ways to detect 
the fake data attack. The first one is use a searching 
dictionary. Attacker may cut certain interval from our 
normal dataset and duplicate it as fake data stream. To 
deal with that, for each data point with a time step T, we 
collected 100 points before T and then store them as a 
list. So finally we utilized a dictionary with the mapping 
relationship of (temperature of T, 100 temperatures 
sample before T).  In this way, for each new input, we 
traverse all dictionary to check whether there is new 
repeat interval. The second method is check the zero-
crossing frequency of  temperature. Attacker may add 
some noise like sin() or cos() or square wave to the 
existed data stream to make it looks similar to normal 
data. To defend that, we defined a sliding window of 
length 100. Let it move from the start to the end of the 
current dataset. We calculated the maximum and 
minimum “count” of  gradient changing. So when a new 
input comes, we compared the new calculated “count” 
with the safety threshold to find out whether any 
“Additional Noise Attack” happens. 

G. Gap Detection 

In order to detect when the Red Team jams our data, we 
designed a program that will notify when there are 
significant gaps in data collection. The sensors collect 
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data every 10 seconds which get  fed to a real time CSV 
file. We can use the program to find how many 
significant gaps in the data there was in a certain time 
frame and how long each gap was. The length of a gap to 
be considered significant is decided by the user. Small 
gaps in the data appear frequently as a cause of 
imperfections in the sensors and weak signal, and these 
gaps should not be confused with actual jamming attacks 
from the Red Team. 

V. FUTURE WORK 

A. Email Notification 

Currently we use a Python SMTP interface to login to a 
Gmail account and send out an email notification when 
making coffee. For security purposes, we needed to 
register our application with the Gmail API and let the 
software send emails with special authentication keys 
instead of a username and password. [5] Email 
notifications were sent out whenever anomalous data 
was detected or gaps in data were detected. 
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