

1

IoT Bandwidth Locators for User Evaluation

Da Huo
 School of Arts and Sciences

Rutgers University, Piscataway
dh637@scarletmail.rutgers.edu

Hairong Wang
School of Engineering

Rutgers University, Piscataway
hw385@rutgers.edu

Shruti Das
Clark School of Engineering

University of Maryland, College Park
shrutid647@gmail.com

Parul Puri
School of Engineering

Rutgers University, Piscataway
pp646@rutgers.edu

Weizhong Kong
 School of Engineering

Rutgers University, Piscataway
kwz20112938@gmail.com

Perry Wu
 School of Engineering

Rutgers University, Piscataway
perrywu6@gmail.com

Pranathy Veldandi
 School of Engineering

Rutgers University, Piscataway
vpranathy@gmail.com

Daniel Like
School of Engineering

University of Pennsylvania, Philadelphia
dlike230@gmail.com

Joshua Guo
Montgomery High School

Skillman, New Jersey
jguo435@gmail.com

Abstract — Smart home automation can empower
everyday tasks by enabling limited human intervention
between the number of devices on the same network, or
within the same bandwidth connection. These everyday
home devices send data through a heterogeneous network
of sensors and actuators to a centralized database which
then appropriately generates responses for the “things”
connected. Though beneficial, this may also lead to
external parties being able to control this data so security
is a major issue.

Index Terms — IoT, TI Sensortag, LARS, SSH Tunneling

I. INTRODUCTION

Internet of things (IoT) .

Our IoT simulation involves two separate teams. Our
project team is the Blue Team, or the defense team, and
the other team is the Red Team, or the attack team.

While one of our main objectives is to build an end-to-
end IoT framework to collect and analyze sensor data
from devices, the remainder of our objectives revolve
around combating the objectives of the Red Team.

This paper describes the design of an end-to-end security
conscious IoT framework for everyday home devices,
using openHAB, which actively uses machine learning
techniques to detect attacks on its data.

Our initial system was set up to incorporate two different
wireless communication protocols: Bluetooth Low
Energy and Z-wave.

Figure 1: Block Diagram of the IOT Framework

II. FRAMEWORK ARCHITECTURE

A. Overview:

Figure 2: End-to-End Detailed Architecture

B. Communication Protocols

1) Bluetooth Low Energy
2) Z-wave

C. Hardware Components

1) Texas Instruments Sensortag CC2650
2) Aeotec Smart Switch 6

D. Open Source Software Components

2

1) openHAB: The open Home Automation Bus is an
open source, technology agnostic home automation
platform which runs as the center of a smart home.
openHAB software integrates different home automation
systems, devices and technologies into a single solution.
It provides uniform user interfaces, and a common
approach to automation rules across the entire system,
regardless of the number of manufacturers and sub-
systems involved.[7]

● Architecture Overview:
openHAB is developed in Java and mainly based
on the Eclipse SmartHome framework. It uses
Apache Karaf together with Eclipse Equinox to
create an Open Services Gateway initiative
(OSGi) runtime environment. Jetty is used as an
HTTP server. It is a highly modular software
which can be extended to a variegated
applications from creating common UIs to
interacting with ever growing number of
physical things through ‘Add-Ons’.[7]

Figure 3: OpenHAB architecture overview

In openHAB things are the entities which can be
physically added to the system like bluetooth sensors, Z-
wave devices, web services etc. Bindings are the
software adapters which make the things available in the
home automation system. Items are the capabilities
which can be utilized in our applications for either
building any automation location or for creating
customizable graphs/ UI. Items may have different
states. The links are the glue between the items and the
things. In our automation system, we use things like
bluetooth sensors and Z-wave devices. The bluetooth
sensors help us gather information about coffee machine
and the refrigerator. These sensors are added as things
and have different items like humidity, light,
temperature, accelerometer etc. This sensor data can be
used to detect temperature values, to learn patterns and

help to predict when will the coffee be ready. The Z-
wave controller communicates with the microwave,
coffee machine, water cooler etc to provide us with data
about those devices. Our system is able to receive the
data from these things and has items like current
consumption, power consumption, switch etc. We are
able to automate the process of switching the devices On
/ Off at night by communicating with the nodes. We
collect the bluetooth sensor data to detect light intensity
at night and use that information to generate automation
rules to switch off the Z-wave devices if there is no one
in the break room. The rule engine in openHAB helps in
the process of automation.

2) Influx Database:
InfluxDB is used as a data store for any use case
involving large amounts of time-stamped data, including
DevOps monitoring, log data, application metrics, IoT
sensor data, and real-time analytics. InfluxDB helps us
to persist time series data and conserve space on our
system. It saves data for a defined length of time and
auto expires unneeded data if any. It also provides SQL
like language to query and interact with the data. We are
able to persist all the items’ states in the InfluxDB every
minute. The InfluxDB can be linked and configured to
OpenHAB which helps us to store and query all the data
that openHAB monitors.[8]

3) Grafana:
Grafana is an open source software for time series
analytics. It can be linked to many databases and helps
to query, interact and display real time data. We
configured the InfluxDB in Grafana and linked the
database to openHAB, thus querying real time data from
the database and displaying it through customizable
graphs. We were able to query all the items available in
openHAB and display their graphs on Grafana as all the
data was persisting to InfluxDB and the database was
configured in Grafana.[6]

III. FRONT END APPLICATION

The strategy we used to make the coffee email
notification work is to constantly monitor the gradient of
coffee pot’s temperature. We take the gradient of
temperature data over the past 5 minutes using the
sliding window shown in Figure 3:

3

Figure 3: Gradient of Ambient Temperature

We analyzed temperature data over the past month to set
the gradient threshold to be 0.003 C°/sec. When the
gradient monitor detects a gradient greater than 0.003
C°/sec, the coffee machine is predicted to be on and
making coffee. We will send out an email notification to
everyone at this time.

In order to achieve real time data analysis regardless of
sensor disconnection, we used a separate data analyzer
server and transfer data through WebSocket.

For security purposes, when we send emails, we need to
register our application to Google API and let the
software send out the email.

IV. ARTIFICIAL INTELLIGENCE TRAINING

A. Overview

Artificial Intelligence and Machine Learning is used in
this project to identify attacks from the Red Team. We
trained regression models to predict future ambient
temperatures. In the case of spoofed data from the Red
Team, we would use our predictions to determine
whether incoming data was likely to be falsified or not.
In addition, we also monitored our data to detect data
gaps, check results with other parameters, and account
for additional noise.

Figure 4:

B. Training Models

We started with three different regression models:
Ridge, Lasso, and Elastic Net. These regression models
are called regularization methods. They both minimize
the sum of the squared error of the model on the training
data while also reducing the complexity of the model
(absolute sum of all coefficients). Ridge Regression
retains all the features of the data and shrinks the
coefficients. Lasso Regression only keeps very
important variables and sets all other correlated ones to
zero. The Elastic Net Regression is the combination of
these two regressions. It groups correlated variables
together, and an entire group of variables are included in
the final model building if any one of the variables in the
group is a strong predictor. This model is best used when
training data has many data points (>10,000) because
Ridge keeps too much data to be efficient, and Lasso
removes too much necessary data. The Elastic Net model
minimized the cost function to the greatest extent;
therefore, the Elastic Net model was the optimal one [2].
However, we were able to reduce overlap of RMSE
distributions of falsified and non-falsified data to the
greatest extent with LARS, or Least-Angle Regression.
This algorithm is also a linear regression algorithm,
although it functions mainly by incrementally expanding
the impact of highly explanatory variables [3].

C. Predictor Evaluation

We used the RMSE (root mean square error) loss
function to evaluate the performance of the predictors
we trained. This loss function computes the average of
the squares of the absolute difference between predicted
and observed values and returns the square root of this
average. It is a useful measure of performance for
regression because it provides the standard amount by
which predicted data differs from observed data.

D. Fake Data Simulation

In order to test the accuracy of our anomaly detection
techniques, we needed to be able to generate fraudulent
data that appeared similar to the original data. To do this,
we modified a multiplier for each data points, initialized
at 1, by very small, random increments. This method
ensured that the fabricated data would not have random
spikes, and would thus look similar to the original data.
Both the multiplier and the fake data were confined to

4

specific bounds to ensure that the simulated fraudulent
data did not deviate very significantly from the real data.

E. Prediction

For the first method, We trained an Elastic Net
regression model to predict a given sensor value for the
coffee pot using all sensor values for sensor readings a
minute in the past. For example, one instance of this
model predicted future ambient temperature based on
object temperature, lighting, pressure, humidity, and
predicted ambient temperature for the previous minute.
The use of predicted ambient temperature, rather than
measured ambient temperature, was important for this
regression as it ensured that the model would rely only
on recent measured data and previous predictions. A
model that used measured instead of predicted ambient
temperature data from the previous minute to predict
current ambient temperature could reach extremely high
levels of accuracy just by producing a value very close
to the previous value. Thus, using predicted ambient
temperatures resulted in predictions whose accuracy
gave a far more valuable representation of the predictive
value of the given sensor readings. While this specific
model was not particularly useful for making long-term
predictions as it required recent sensor data for each
individual prediction, it proved useful for the purpose of
anomaly detection.

We made a separate program to give us useful
predictions of future data. This program uses measured
data to predict data 15 minutes in the future. This
program is effective because it can make predictions
farther into the future without new sensor data. This
prediction algorithm performed with an RMSE loss
value of 1.83 after modifying the hyperparameters of the
Elastic Net regression algorithm.

We also applied another methodology with higher
accuracy: trend fitting. Before that we tried various
algorithms(LSTM, LR .etc) for prediction. They all have
same problem: huge accuracy fluctuation may happen
when dealing with different test datasets. So we moved
our focus from learning the feature of the whole day to
simulating the data trend within a certain range near the
current data point. So firstly we achieved fitting within
time t-14 to t; then we make a prediction of temperature
of time (t+19) which is 20 mins later . Finally we
achieved that with only 0.6 RMSE loss. We also tried
various degrees of trend fitting and we found that high
degrees may have better performance in certain

intervals, but have larger oscillation in the total period,
so we used only one-degree fitting instead.

F. Anomaly Detection

Using the trained Elastic Net regression model from
section B, we were able to classify incoming sensor data
as valid or fraudulent. This was done by randomly
generating falsified and non-falsified testing data sets
and computing the model’s performance on each of
these data sets. The performance score used was the
RMSE loss function. We then graphed the distributions
of RMSE loss values for falsified and non-falsified data
sets, and found that the overlap between these
distributions was minimal. This made it possible to
identify a RMSE loss cutoff that could be used to
reliably distinguish between legitimate and fraudulent
data, which performed with 95% accuracy. We were
able to increase this level of accuracy to 100% by using
LARS regression, predicting data 15 minutes into the
future and using two consecutive data points to make
this prediction. This 100% accuracy does not necessarily
extend to all fraudulent data and instead only applies to
our method of generating falsified data [4].

Additionally, we implemented two other ways to detect
the fake data attack. The first one is use a searching
dictionary. Attacker may cut certain interval from our
normal dataset and duplicate it as fake data stream. To
deal with that, for each data point with a time step T, we
collected 100 points before T and then store them as a
list. So finally we utilized a dictionary with the mapping
relationship of (temperature of T, 100 temperatures
sample before T). In this way, for each new input, we
traverse all dictionary to check whether there is new
repeat interval. The second method is check the zero-
crossing frequency of temperature. Attacker may add
some noise like sin() or cos() or square wave to the
existed data stream to make it looks similar to normal
data. To defend that, we defined a sliding window of
length 100. Let it move from the start to the end of the
current dataset. We calculated the maximum and
minimum “count” of gradient changing. So when a new
input comes, we compared the new calculated “count”
with the safety threshold to find out whether any
“Additional Noise Attack” happens.

G. Gap Detection

In order to detect when the Red Team jams our data, we
designed a program that will notify when there are
significant gaps in data collection. The sensors collect

5

data every 10 seconds which get fed to a real time CSV
file. We can use the program to find how many
significant gaps in the data there was in a certain time
frame and how long each gap was. The length of a gap to
be considered significant is decided by the user. Small
gaps in the data appear frequently as a cause of
imperfections in the sensors and weak signal, and these
gaps should not be confused with actual jamming attacks
from the Red Team.

V. FUTURE WORK

A. Email Notification

Currently we use a Python SMTP interface to login to a
Gmail account and send out an email notification when
making coffee. For security purposes, we needed to
register our application with the Gmail API and let the
software send emails with special authentication keys
instead of a username and password. [5] Email
notifications were sent out whenever anomalous data
was detected or gaps in data were detected.

VI. REFERENCES

[1] H. Kopka and P. W. Daly, A Guide to

LATEX, 3rd ed. Harlow, England:
Addison-Wesley, 1999.

[2] J. Shubham. “A Comprehensive Beginners
Guide for Linear, Ridge and Lasso Regression.”
Analytics Vidhya, 27 Apr. 2018.

[3] Efron, Bradley, et al. “Least Angle Regression.”
The Annals of Statistics, vol. 32, no. 2, 2004.

[4] V. Chandola, A. Banerjee, and V. Kumar.
Anomaly detection: A survey. ACM Computing
Surveys, 41:1-58, 2009. Y. Cheng and G. Church

[5] https://developers.google.com/gmail/api/guides/sending
[6] https://grafana.com/grafana
[7] https://www.openhab.org/docs/
[8] https://www.influxdata.com/time-series-platform/influxdb/

